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ABSTRACT:  
The Information Warehouse at the Ohio State 

University Medical Center is a comprehensive 

repository of business, clinical, and research data from 

various source systems.  Data collected here is a 

valuable resource that facilitates both translational 

research and personalized healthcare.  The use of such 

data in research is governed by federal privacy 

regulations with oversight by the Institutional Review 

Board.  In 2006, the Information Warehouse was 

recognized by the OSU IRB as an “Honest Broker” of 

clinical data, providing investigators with de-identified 

or limited datasets under stipulations contained in a 

signed data use agreement.  In order to streamline this 

process even further, the Information Warehouse is 

developing a de-identified data warehouse that is 

suitable for direct user access through a controlled 

query tool that is aimed to support both research and 

education activities.   In this paper we report our 

findings on performance evaluation of different de-

identification schemes that may be used to ensure 

regulatory compliance while also facilitating practical 

database updating and querying.  We also discuss how 

date-shifting in the de-identification process can 

impact other data elements such as diagnosis and 

procedure codes and consider a possible solution to 

those problems.  

 

BACKGROUND 
After the adoption of electronic medical record 

(EMR) systems in an academic medical center in 

support of clinical operations, data from the EMR 

becomes a valuable resource for clinical and 

translational research
1
.  This data, combined with other 

information such as genomic data, lays the foundation 

for personalized healthcare
2
.  The use of patient records 

in research and education is governed by federal 

privacy regulations
3
 (such as HIPAA and the Common 

Rule), that constrain the use of identifiable patient 

information in research activities.  Investigators can 

obtain identifiable data for research use after an 

Institutional Review Board (IRB) approval is obtained.  

Obtaining an IRB approval, however, can be a time 

consuming process that may at times discourage 

research activities. 

Therefore, to support both research and education, 

it is desirable to have a completely de-identified 

database (DDB) that is similar in data structure to the 

identifiable version (IDB).  This DDB must be HIPAA 
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compliant in terms of the masking or removal of 

Protected Health Information (PHI), and should ideally 

be capable of defending against re-identification 

attacks.  Structural similarity between IDB and DDB is 

beneficial to ensure that previously developed 

applications against the IDB will be applicable on the 

DDB with minimal modification. 

In order to support research and education 

activities using medical records, efforts have been 

made to de-identify clinical data in both structured
4,5,6,7

 

and unstructured
4,8,9

 data.  Methods have been 

described using a hash function to build a de-identified 

bio-repository
5
.  Other methods have been reported on 

either de-identification schemes
10
 or trying to guarantee 

anonymity
11
.  De-identification of medical free text has 

been studied and published with great progress in the 

past years. 

In preparation of building a de-identified 

Information Warehouse
12
 (IW) at the Ohio State 

University Medical Center (OSUMC), we report here 

our evaluation of the impact of different de-

identification methods on database performance and 

related issues.  This resource is intended to provide 

services to investigators and educators under the 

OSUMC IRB approved Honest Broker Protocol. 

 

THE OSUMC HONEST BROKER PROTOCOL 

The IW’s “Honest Broker” status as a provider of 

de-identified clinical data for research purposes was 

approved as an annually reviewed procedural protocol 

by the Ohio State University Biomedical IRB in April 

2006.  Under this protocol (the Honest Broker 

Protocol
13
, or HBP), a researcher typically signs a data 

use agreement with the IW when they request a de-

identified or limited dataset.  IW data analysts prepare 

the resulting data by removing PHI and deliver the data 

set as a bundle of coherently linked files to the 

researcher.  In a de-identified dataset, dates are 

recorded as time intervals from a patient’s first visit.  

Actual dates, zip codes, and ages over 90 can be 

included in the limited dataset
3
. 

To safeguard against accidental identification, 

resulting datasets with less than 25 records are not 

delivered, only aggregate numbers are reported to the 

requestor.  Re-queries based on previous results are not 

allowed.  De-identified codes are changed between 

datasets to inhibit longitudinal study of particular 

subjects.  Furthermore, should an inadvertent 

identification occur, the Data Use Agreement stipulates 
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that the investigator will immediately seek IRB 

oversight. 

 

METHOD AND RESULTS  
The planned system architecture is depicted in 

Figure 1.  Another instance of IDB is replicated and 

updated using Change Data Capture for near real-time 

update (IDB2).  IDB2 serves as a backup for IDB as 

well as a de-identified data feed for DDB.  Original 

linkage tables (mapping between identified and de-

identified codes) are maintained in IDB2 only.  Only 

secondary mapping (see method sections below) will 

be stored in DDB when necessary. 

 

 
Figure 1: System Architecture for building a de-identified 

Information Warehouse. 

This work is to address two specific issues that are 

required by the HBP
7
: complete de-identification of 

data and inhibiting the use of de-identified data for 

longitudinal study.  To prevent longitudinal study (akin 

to human subject research), we require a viable 

mechanism to periodically generate an entirely new set 

of DID’s throughout the DDB. This process must 

perform well enough to complete within an overnight 

session even as the warehouse continues to grow in 

size throughout the foreseeable future.  Query 

performance of the DDB is also a consideration as the 

system must remain as practical as the IDB for 

performing complex queries and data mining tasks.   

With these constraints in mind, we consider a variety 

of possible de-identification mechanisms for the DDB 

and seek to evaluate the relative performance impacts 

of each method.  We also consider mechanisms for 

date shifting to preserve inter-event time intervals in 

the DDB and explore how this can impact some 

analysis problems. 

For de-identification of structured data, we choose 

to perform tests on identifiers such as Medical Record 

Number (MRN), encounter number (ENC), and 

accession number (ACSN) that can be used to uniquely 

identify a patient. The following de-identification 

schemes are tested: 

 

1. Secure Hash Algorithm (SH) – identifier (ID) is 

hashed into a unique string serving as the de-

identified identifier (DID) 
15
.  For testing purpose, 

SHA-1 algorithm is used to generate the 40-byte 

long DID.  Subsequent database update will not 

change the DID.  Therefore, the DID will keep 

constant for the life of the DDB. 
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2. Random Mapping (RM) – actual identifier code 

(ID) is directly mapped to a random number (10 

digits) as the DID.  This process produces a DDB 

that is classified as a “coded” dataset and therefore 

is subjected to more restricted use restrictions for 

research purposes
3
.  This DID can only be changed 

by a complete rebuild of the DDB or a re-mapping 

followed by an update. 

 

3. Hashing-Mapping (HM) – As the combination of 1 

and 2 above, the ID is first hashed into a unique 

string and then each string is assigned a 10 digit 

random number as the DID.    This DID can 

subsequently be changed by DDB update or 

rebuild to meet the requirement of inhibiting 

longitudinal studies. 

 

4. Hashing-Mapping-and-Re-Mapping (HMM) – ID 

is first hashed into a string, followed by mapping 

the string to a permanent primary unique random 

number.  This in turn is mapped to a secondary 

unique random number that is transient between 

re-coding cycles of the DDB.  Both random 

numbers are 10 digits long.  Data in DDB is stored 

with the primary number and query results are 

shown with the secondary number serving as the 

DID through database utilities.   

 

We intend to compare RM and SH for expense on 

the use of a hashing function and use SH as a standard 

to evaluate the performance of the HM and HMM 

methods.  Query execution time is gathered using 

Oracle’s SQL Trace Facility and TKPROF utility.  

CPU time for query execution is collected 4 times, with 

the first data point discarded and the other 3 recorded 

and averaged. 

 

All performance tests are performed on a Sun Fire 

V445 server running Solaris 10 and Oracle Database 

11gR1.  Secure Hash Algorithm SHA-1 is used in this 

work.  For both SHA-1 and the random number 

generator, Oracle’s DBMS.Crypto toolkit is used.  All 

tables are created with table logging turned off. 

    

To test SH, a database function is created to take 

an ID as input and then output the hashed string as the 

DID.  Tables containing mappings of MRN-DID and 

HashedString-1
st
DID-2

nd
DID are created for RM and 

HMM, respectively.  HM shares the same table with 

HMM by using the HashedString-1
st
DID pair in table. 

 

Table creation is evaluated by using the following SQL 

statements:  

 

SH: 
INSERT INTO dest_table 

SELECT sha_1(mrn) AS mrn, other_fields 
  FROM orig_table; 
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RM: 
INSERT INTO dest_table 
SELECT mapping.did, orig.other_fields 

  FROM orig_table, mapping_table 
 WHERE orig.mrn=mapping.mrn; 

 

HM/HMM 
INSERT INTO DEST_TABLE 
SELECT mapping.did, orig.other_fields 

  FROM orig_table, mapping_table 
 WHERE sha_1(orig.mrn)=mapping.hash_string; 

 

 

Table 1: Table Creation Time for initial loading of 

100K and 1 Million records (seconds) 

# Rec. Method 1 2 3 Average 

RM 9.58 9.66 9.53 9.59 

SH 15.58 16.02 16.11 15.90 100K 

HM/HMM 15.30 15.99 15.46 15.58 

RM 77.18 78.16 77.11 77.48 

SH 161.69 161.09 161.26 161.35 1M 

HM/HMM 149.76 148.22 148.21 148.73 

 

Table 2: Data Insertion Time for adding 21K Rows (in 

seconds).  Data are collected for both with 

and without table index on the de-identified 

column. 

Indexing  Method 1 2 3 Average 

RM 5.33 3.51 5.39 4.74 

SH 4.93 4.85 4.54 4.77 
without 

Index 
HM/HMM 4.37 4.40 4.36 4.38 

RM 4.27 4.06 3.63 3.99 

SH 4.85 5.39 5.52 5.25 
With 

Index 
HM/HMM 4.66 4.89 4.79 4.78 

 

Table 3: Query time (in seconds) for fetching data for 

the same10K identifiers. 

Method Obs. 1 Obs. 2 Obs. 3 Average 

SH 1.78 1.76 1.77 1.77 

RM/HM 0.51 0.51 0.52 0.51 

HMM 0.90 0.90 0.91 0.90 

 

Table 1 shows the table creation time for initial load 

of 100K and 1 million records using SH, RM, and HM 

methods to de-identify one column. 

Using similar SQL statements shown above, data 

insertion performance is tested with and without index 

on the ID column.  Table 2 shows time by inserting 

21K records into a table with 1 million rows using 

different de-identification schemes.  21K was chosen 

based on average daily insertions into the IW 

production lab test table over the past 5 years. 

We choose to use a simple query that involves the 

join of 2 tables on index IDs to evaluate query 

performance.   

 
SELECT count(1) 
  FROM table_1, table_2 

 WHERE table_1.did = table_2.did; 

 

AMIA 2009 Symposium Pr
In the case of HMM, a view is used instead of an 

actual table.  Table 3 shows query time on a query that 

joint select from a table with 10K identifiers and a 

testing table of 1 million rows over the indexed DID 

columns from both tables.  For HMM, a view is created 

to replace the permanent ID with the secondary ID and 

query time test is performed using the view. 

HM and HMM share the same table creation and 

insertion time, while RM and HM have similar query 

performance.   This is due to the fact that these 

methods involve exactly the same database operations 

in the two categories, respectively. 

 

DISCUSSION 
Initial Data Loading Time 

From Table 1 it is clear that data loading time is 

twice as fast in RM as in SH and HM/HMM.  This is a 

cost due to the use of a secure hash algorithm.  Also 

observed is that HM/HMM, although adding a 

mapping step on SH, performs better than SH.   We 

believe that this is due to the difference between 

inserting a 40-byte string and a 10 digit number into 

the database.  As with most algorithms, the database 

engine handles numbers more efficient than dealing 

with strings. 

 

Data Insertion Time 

Inserting a record does not display significant 

differences among the tested methods for an average 

daily load of 21K rows.  Also noted is that there is no 

significant time difference in inserting into a table with 

or without indices that are already built on the table.  

This observation is in agreement with the general 

database practice that table index is not rebuilt or 

updated during insertion.  

 

Data Update 

One of the potential advantages of using HM is 

that DID can be refreshed using an update process.  

However, tests results showed that a full table update 

on an ID column is always much slower than a table 

truncate and re-build process.  For example, inserting 

100K records took 9.24 seconds to finish while 

updating 100K records on an indexed numeric DID 

(10% update) lasted 104.19 seconds.  This process can 

be costly as the DDB grows possibly impairing 

availability of the system for customers. 

HMM provides another mechanism for such an 

update: one simply needs to generate a new set of 

secondary ID’s.  However, as can be seen in Table 3, 

this process imposes a 78% penalty ((0.90-0.51)/0.51) 

on our query test case. 

 

Data Deletion 

Data deletion is not tested in this study because 

deletion rarely occurs in a de-identified data repository.  

For sporadic row deletions it is anticipated that this 

operation would not produce significant impact. 
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Query Performance 

Since database queries rely on an index for 

performance, it is no surprise that a query that makes 

use of an index on a column of numerical values 

always outperforms the same query that uses an index 

on a column of categorical values.   Therefore, it is 

reasonable to see that SH recorded slowest query 

execution time, more than 3 times that of the best 

performer (RM/HM) on a simple 2 table join on 

indexed DID columns. 

The use of a view in HMM caused it to be 78% 

slower than direct query in RM and HM.   However, 

this is still almost twice as fast as in SH on the same 

test query.  It is postulated that more table joins, which 

is typical in data analysis, will widen the performance 

gap among all methods tested here. 

 

Longitudinal Study Prevention:  

In order to prevent data re-query using previous 

query results and to inhibit longitudinal study using the 

DDB, the DID used in DDB has to change periodically.  

With the SH method, change of the DID involves a 

change of the hashing function (e.g., a new “salt”) and 

a complete rebuild of the DDB, which is impractical.  

The RM method requires the generation of a new set of 

DIDs, thus having the same limitation as in SH 

method.  In the HM method, the random number DID, 

in theory, can be re-generated and the DDB updated 

without a complete DDB rebuild.  However, in 

practice, the update takes a prohibitively long time, 

rendering it impractical.  In the HMM method, an 

update for a new set of DID is simplified so as to re-

generate the secondary random numbers.  This update 

can be performed any time when no query is being 

executed in the database. 

 

Date Shifting 

Date shifting has been proposed and used in other 

implementations of various databases that support de-

identification.  For example, Roden et al reported on 

shifting a random number of days between 1-364 days 

to the past
4
.  However, a date in DDB shifted in such a 

manner may complicate other clinical data such as 

diagnosis and procedure codes.  Codes that have 

changed over time will no longer be valid for some of 

the patients.  For example, if a patient’s diagnosis code 

is assigned as “A” right after the new code change 

(from “B” to “A”) takes effect, shifting this patient’s 

visit date to the past will result in the wrong code (“B”) 

being associated to this visit.  Replacing date with a 

time delta from a patient’s first visit will solve this 

problem but it is considered to be too prohibitive to 

some research work that relies on dates. 

One possible way of solving this problem is to add 

a new field to the table that uses codes to store either 

the code descriptions or effective ending date (EED) 

for the code.  The use of EED is possible as long as 
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EED is not date-shifted.  Date-shifted EED can 

obviously be used to re-calculate real patient visit date.  

With this mechanism, the DDB will increase in size but 

impacts of date shift can be minimized.  Based on our 

query test results, the use of EED (effectively a number 

instead of a long string inside a database) would yield 

better performance but the use of such a date can be 

confusing when two dates in the same record show one 

date being shifted to the past and the other not. 

Shifting date by any unknown number of days 

would be sufficient for the purpose of de-identification
4 

alone.  We tested on a shift using a patient’s birthday.  

This is based on the observation that it is unlikely that a 

patient will have a hospital visit before his/her 

birthday.  By shifting each patient’s birthday to a 

common date, i.e., 1/1/1900, all visit dates will appear 

to be random while visit intervals are preserved, thus 

de-identified. 

Patients of age over 90 at time of visit can be 

further time-adjusted to make his/her age 90, 

effectively creating an age group of 90.  Patients who 

are less than 18 years of age at time of visit will be 

excluded from DDB. 

 

Other data elements 

The masking of other data elements will follow 

published methodologies that are HIPAA and HBP 

compliant
4,5
.  For example, address will be modified to 

keep only the state and the first 2 digits of a zip code.  

Medical free-text reports will not be included in the 

DDB at this time.  We feel that more evaluation is 

necessary on various text de-identification packages 

before an update to HBP can be made. 

 

Re-identification  

All schemes evaluated in this study are susceptible 

to re-identification attacks
11
.  Clearly, published 

mechanisms describing re-identification attacks
14
 do 

apply to this DDB implementation due to the inclusion 

of data elements such as gender, ethnicity, and clinical 

information such as diagnosis and procedure codes.  

Since the purpose of DDB is not to provide 

anonymized data, re-identification is not addressed in 

this study.   

 

CONCLUSION 

We reported here the undesirable effect of date 

shifting on data integrity of a DDB and suggested one 

possible solution to preserve the meaning of coded 

columns (e.g., diagnosis) against possible changes in 

the meaning of a code.  We have also evaluated various 

de-identification mechanisms and their impact on 

different database operations. 

The SH mechanism has the advantage of being 

relatively straight forward in design, closely preserving 

data model similarity between the IDB and the DDB.  

Moreover, this design has been deployed in production 

at other institutions for some time and has been 
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demonstrated to be effective.   However, query and 

update performance is adversely impacted in this 

design as this process replaces a short integer key with 

a long character string that is often a join key in 

queries.  Furthermore, more robust hashing algorithms 

that generate longer keys (SHA-512, for example) will 

provide better security but will impede query and 

update performance even more.  The RM mechanism 

has the advantage of not impacting query performance 

when compared to the IDB as the new keys will be the 

same size and type as the original patient identifiers.  

However, DDB’s produced by both SH and RM would 

be considered “coded” datasets by federal privacy 

regulations
3
, leading to more confined use restrictions 

for research purposes.   

Regenerating DID’s with the HM mechanism will 

require an update transaction on every row of every 

table with an ID or will require a complete retransfer of 

the original IDB data into the DDB.  Therefore, as data 

volume grows exponentially, we would expect this 

mechanism to be challenging to keep within a 

reasonable update time window.  The HMM 

mechanism demonstrated the most practical 

performance when recoding the DDB since it requires 

update transactions per ID on only a single table in the 

entire data warehouse (the code map).  Moreover, 

query performance of this model benefited from using 

a 10-digit integer as the key instead of a string several 

times that size (as in the pure hashing key approach).  

However, HMM suffered losses in query performance 

against HM due to the introduction of an extra database 

view even though its query performance is still 

advantageous over SH. 

 If possible, one would initially start with a DDB 

using HM for de-identifiers and subsequent updates 

using table truncate and re-load because this scheme 

provides the best query performance.  Once the DDB 

grows to a size that prohibits such an update, or when 

demands on DDB availability render prolonged down 

times impractical, it can be easily converted into HMM 

by adding a secondary de-identifier to each identifier. 

This secondary de-identifier can be used to build a 

database view.  Performance of HMM can be improved 

dramatically by adding a group of caching storage 

disks (CSD) and building materialized views (MVs) on 

the CSD’s over the original views and queries are 

written using the original views.  Queries to the DDB 

will use the MVs whenever possible but can also fall 

back to use the original views when MVs are not 

available.  MVs need to be rebuilt every time 

secondary de-identifiers are refreshed.  CSD, since it 

only stores the MVs and not a critical component, 

should be fast storage media and need not have 

redundancy and content backup. 
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